
µ-Statistical Convergence of Sequences
in Probabilistic n-Normed Spaces

Rupam Haloi and Mausumi Sen

Abstract In this article, using the notion of a two-valued measure μ, we pro-
pose the ideas of μ-statistical convergence and μ-density convergence in probabilis-
tic n-normed spaces and study some of their properties in probabilistic n-normed
spaces. Further, a condition for equality of the sets of μ-statistical convergent and
μ-density convergent sequences in the space have been established. The definition of
μ-statistical Cauchy sequence in the space has also been introduced and some results
have been established. Finally, we propose the notion of μ-statistical limit points in
these new settings and studied some properties.
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1 Introduction

As an important generalization of the concept of distance as proposed by Fréchet
[1] in 1906, Menger [2] developed the idea of a statistical metric space, now called
probabilistic metric space. Employing the idea of probabilistic metric and simplify-
ing the concept of ordinary normed linear space, Sherstnev [3] proposed the concept
of probabilistic normed space (in short PN-space) in 1962, in which the norm of
a vector was described by a distribution function rather than by a positive number.
Tripathy and Goswami [4–7], Tripathy et al. [8] and others have introduced different
classes of sequences using the notion of probabilistic norm and have investigated
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their different algebraic and topological properties. The situation where crisp norm
fails to measure the length of a vector precisely, the notion of probabilistic norm
happens to be very much useful. The theory of PN-space is decisive as a conclu-
sion of deterministic results of normed linear spaces and furnish us some decisive
tools relevant to the study of convergence of random variables, continuity properties,
linear operators, geometry of nuclear physics, topological spaces, etc. This space
was further generalized into the theory of probabilistic n-normed spaces (abbrevi-
ated as PnN-spaces) by Rahmat and Noorani [9] and many authors. As an important
generalization to the theory of convergence, Fast [10] initially proposed the idea
of statistical convergence and then studied by many researchers. Karakus [11] has
extended idea of statistical convergence into probabilistic normed space 2007. As
an interesting generalization of statistical convergence, Connor [12, 13] introduced
the idea of statistical convergence with the help of a complete {0,1} valued measure
μ defined on an algebra of subsets of N. Some works in this field can be found in
[14–17]. The notion of statistical limit points was first introduced by Fridy [18]. The
aim of this article is to introduce and study the concepts of μ-statistical convergence
and μ-density convergence in PnN-spaces.

A brief sketch of the article is as follows: IP Sect. 2 contains some basic definitions
that are relevant for subsequent sections. We have introduced the definitions of μ-
statistical convergence andμ-density convergence in PnN-spaces and discussed some
of their properties in Sect. 3. Section4 deals with the concept of μ-statistical limit
points in PnN-space and their properties. Finally, a brief conclusion to the article
follows in Sect. 5.

2 Preliminaries

Throughout the paper,R,N, andR+ denote the sets of real, natural, and nonnegative
real numbers, respectively.

Definition 1 ([19]) A function f : R+ → [0, 1] is called a distribution function if
it is nondecreasing, left-continuous with inf t∈R+ f (t) = 0 and supt∈R+ f (t) = 1.

Throughout D denotes the set of all distribution functions.

Definition 2 ([19]) A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is said to be a
continuous t-norm if it satisfies the following conditions, for all a, b, c, d ∈ [0, 1]:
1. a ∗ 1 = a,
2. a ∗ b = b ∗ a,
3. a ∗ b ≤ c ∗ d, whenever a ≤ c and b ≤ d,
4. (a ∗ b) ∗ c = a ∗ (b ∗ c).

Definition 3 ([9]) A triplet (Y, M, ∗) is called a probabilistic n-normed space (in
short a PnN-space) if Y is a real vector space of dimension d ≥ n, M a mapping
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from Y n into D and ∗ is a t-norm satisfying the following conditions for every
y1, y2, . . . , yn ∈ Y and s, t > 0:

1. M((y1, y2, . . . , yn), t) = 1 if and only if y1, y2, . . . , yn are linearly dependent,
2. M((y1, y2, . . . , yn), t) is invariant under any permutations of y1, y2, . . . , yn ,

3. M((y1, y2, . . . ,αyn), t) = M

(
(y1, y2, . . . , yn),

t

|α|
)
for all α ∈ R \ {0},

4. M((y1, y2, . . . , yn + y′
n), s + t) ≥ M((y1, y2, . . . , yn), s) ∗ M((y1, y2, . . . ,

y′
n), t).

Example 4 [9]Let (Y, ||·, . . . , ·||)be an-normed linear space.Leta ∗ b = min{a, b},
for all a, b ∈ [0, 1] and M((y1, y2, . . . , yn), t) = t

t + ||(y1, y2, . . . , yn)|| , t ≥ 0.

Then (Y, M, ∗) is a PnN-space.

Definition 5 ([9]) A sequence y = (yk) in a PnN-space (Y, M, ∗) is said to be con-
vergent to y0 ∈ Y in terms of the probabilistic n-norm Mn , if for every ε > 0, λ ∈
(0, 1) and z1, z2, . . . , zn−1 ∈ Y , there exists a positive integer k0 such that

M((z1, z2, . . . , zn−1, yk − y0), ε) > 1 − λ,

whenever k ≥ k0. In this case, we write Mn − lim y = y0.

Definition 6 ([9]) A sequence y = (yk) in a PnN-space (Y, M, ∗) is said to be
Cauchy sequence, if for every ε > 0, λ ∈ (0, 1) and z1, z2, . . . , zn−1 ∈ Y , there
exists a positive integer k0 such that

M((z1, z2, . . . , zn−1, yk − ym), ε) > 1 − λ,

for all k,m ≥ k0.

Definition 7 ([9]) A sequence y = (yk) in a PnN-space (Y, M, ∗) is said to be
bounded in terms of the probabilistic n-norm Mn , if for every z1, z2, . . . , zn−1 ∈ Y ,
there exists an ε > 0 such that

M((z1, z2, . . . , zn−1, yk), ε) > 1 − λ,

for every λ ∈ (0, 1) and for all k ∈ N.

3 µ-Statistical Convergence and µ-Density Convergence in
PnN-Spaces

Right through the article, by μwe represent a complete {0, 1}-valued finitely additive
measure defined on a field � of all finite subsets of N and suppose that μ(P) = 0, if
|P| < ∞; if P ⊂ Q and μ(Q) = 0, then μ(P) = 0; and μ(N) = 1.
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Definition 8 A sequence y = (yk) is said to be μ-statistically convergent to yo in
terms of the probabilistic n-norm Mn , if for every λ ∈ (0, 1), ε > 0 and z1, z2, . . . ,
zn−1 ∈ Y ,

μ({k ∈ N : M((z1, z2, . . . , zn−1, yk − y0), ε) ≤ 1 − λ}) = 0.

It is written as μ − statM(n) − lim y = y0.

In viewof theDefinition3.1 andother properties ofmeasure,we state the following
result without proof.

Theorem 9 Let (Y, M, ∗) be a PnN-space. Then for every λ ∈ (0, 1), ε > 0 and
z1, z2, . . . , zn−1 ∈ Y , the following statements are equivalent:

1. μ − statM(n) − lim y = y0,
2. μ({k ∈ N : M((z1, z2, . . . , zn−1, yk − y0), ε) ≤ 1 − λ}) = 0,
3. μ({k ∈ N : M((z1, z2, . . . , zn−1, yk − y0), ε) > 1 − λ}) = 1,
4. μ − stat − lim M((z1, z2, . . . , zn−1, yk − y0), ε) = 1.

The following results are consequences of Theorem9.

Corollary 10 Let (Y, M, ∗) be a PnN-space. If a sequence (yk) is μ-statistically
convergent in terms of the probabilistic n-norm Mn, then μ − statM(n) − lim y is
unique.

Corollary 11 Let (Y, M, ∗) be a PnN-space. If Mn − lim y = y0, then μ −
statM(n) − lim y = y0, but not necessarily conversely.

The converse of the Corollary11 does not hold always, which can be shown from
the following example.

Example 12 Let us consider Y = R
n with usual norm. Let p ∗ q = pq for p, q ∈

[0, 1] and M((z1, z2, . . . , zn−1, y), t) = t

t + ||(z1, z2, . . . , zn−1, y)|| , where (z1,

z2, . . . , zn−1, y) ∈ R
n and t ≥ 0. Then (Rn, M, ∗) is a PnN-space. Let A ⊂ N be

such that μ(A) = 0. We define a sequence y = (yk) as follows:

yk =
{

(k, 0, . . . , 0) ∈ R
n, if k = j2, j ∈ N

(0, 0, . . . , 0) ∈ R
n, otherwise.

Then we can easily verify that the sequence (yk) is μ-statistically convergent in terms
of the probabilistic n-norm Mn , but the sequence (yk) is not convergent in terms of
the probabilistic n-norm Mn , as it is not convergent in the space (R, ‖ · ‖).

We now introduce the concept of μ-statistical Cauchy sequence on probabilistic
n-normed space and provide a characterization.

http://dx.doi.org/10.1007/978-981-15-1153-0_3
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Definition 13 Let (Y, M, ∗) be a PnN-space. We say that a sequence y = (yk) is μ-
statistically Cauchy in terms of the probabilistic n-norm Mn , provided that for every
λ ∈ (0, 1), ε > 0 and z1, z2, . . . , zn−1 ∈ Y , there exists a positive integer m ∈ N

satisfying

μ({k ∈ N : M((z1, z2, . . . , zn−1, yk − ym), ε) ≤ 1 − λ}) = 0.

Theorem 14 Let (Y, M, ∗) be a PnN-space. If a sequence y = (yk) is μ-statistically
convergent in terms of the probabilistic n-norm Mn, then it is μ-statistically Cauchy
in terms of the probabilistic n-norm Mn.

Definition 15 A sequence (yk) is said to be μ-density convergent to y0 ∈ Y in terms
of the probabilistic n-norm Mn , if there exists an A ∈ � with μ(A) = 1 such that
(yk − y0)k∈A is convergent to 0 in terms of the probabilistic n-norm Mn .

By ω(Y, M, ∗), we denote the space of all sequences with elements from the PnN-
space (Y, M, ∗) and by �∞(Y, M, ∗), the space of all bounded sequences with ele-
ments from the probabilistic n-normed space (Y, M, ∗).

Theorem 16 Let y ∈ ω(Y, M, ∗). If y is μ-density convergent to r in terms of the
probabilistic n-norm Mn, then y is μ-statistically convergent to r in terms of the
probabilistic n-norm Mn.

Proof Let y = (yk) ∈ ω(Y, M, ∗). Let A ⊂ N such that (yk − r)k∈A is convergent
to 0 in terms of the probabilistic n-norm Mn and μ(A) = 1. Let ε > 0 be given and
z1, z2, . . . , zn−1 ∈ Y . Then it is observed that

{k ∈ N : M((z1, z2, . . . , zn−1, yk − r), ε) ≤ 1 − λ}

contains at most finitely many terms of A ⊂ N. Thus, we have

μ({k ∈ A : M((z1, z2, . . . , zn−1, yk − r), ε) ≤ 1 − λ}) = 0.

Now,

C = {k ∈ N : M((z1, z2, . . . , zn−1, yk − r), ε) ≤ 1 − λ}
⊆ {k ∈ A : M((z1, z2, . . . , zn−1, yk − r), ε) ≤ 1 − λ} ∪ Ac.

Thus, we have μ(C) = 0, and consequently

μ({k ∈ N : M((z1, z2, . . . , zn−1, yk − r), ε) ≤ 1 − λ}) = 0,

which shows that y = (yk) is μ-statistically convergent in terms of the probabilistic
n-norm Mn . �

Definition 17 (APO condition[12])Ameasureμ is said to have the additive property
of null sets or the APO condition, if given a collection {Ai }i∈N ⊆ � of mutually
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disjoint μ-null sets (i.e., μ(Ai ) = 0, for all i ∈ N) such that Ai ∩ A j = φ, for i �= j ,
then there exists a collection {Bi }i∈N ⊆ � with |Ai � Bi | < ∞, for each i ∈ N and
B = ∪i Bi ∈ � with μ(B) = 0.

Let Y be any set, M be the probabilistic n-norm and y = (yk) be any sequence in
Y . Let us define two sets as follows:

1. Dμ(Y, M, ∗) = {y ∈ �∞(Y, M, ∗) : y is μ-density convergent to 0 in terms of the
probabilistic n-norm Mn},

2. Sμ(Y, M, ∗) = {y ∈ �∞(Y, M, ∗) : y is μ-statistically convergent to 0 in terms of
the probabilistic n-norm Mn}.

Definition 18 Let (Y, M, ∗) be a PnN-space. For ε > 0, the open ball B(y, s, ε)
with center y and radius s ∈ (0, 1) is defined by

B(y, s, ε) = {x ∈ Y : M((z1, z2, . . . , zn−1, x − y), ε) > 1 − s,

∀ z1, z2, . . . , zn−1 ∈ Y } .

Theorem 19 Sμ(Y, M, ∗) is closed in �∞(Y, M, ∗) and Dμ(Y, M, ∗) =
Sμ(Y, M, ∗).

Proof Clearly, Sμ(Y, M, ∗) ⊂ Sμ(Y, M, ∗). Now, we will show that Sμ(Y, M, ∗) ⊂
Sμ(Y, M, ∗). Let x = (xk) ∈ Sμ(Y, M, ∗). Let ε > 0 be given and λ ∈ (0, 1). Since
B(x, r, ε/2) ∩ Sμ(Y, M, ∗) �= φ, there is an y ∈ B(x, r, ε/2) ∩ Sμ(Y, M, ∗).Choose
r ∈ (0, 1) such that (1 − r) ∗ (1 − r) > 1 − λ. Since y ∈ B(x, r, ε/2) ∩ Sμ(Y, M,

∗), so μ − statM(n) − lim y = 0. We define

A = {k ∈ N : M((z1, z2, . . . , zn−1, yk), ε/2) > 1 − r},

for z1, z2, . . . , zn−1 ∈ Y . Then, we have μ(A) = 1. Now for each k ∈ A and z1,
z2, . . . , zn−1 ∈ Y ,

M((z1, z2, . . . , zn−1, xk), ε)

= M((z1, z2, . . . , zn−1, (xk − yk) + yk), ε/2 + ε/2)

≥ M((z1, z2, . . . , zn−1, xk − yk), ε/2)

∗ M((z1, z2, . . . , zn−1, yk), ε/2)

> (1 − r) ∗ (1 − r)

> (1 − λ).

Therefore, x = (xk) ∈ Sμ(Y, M, ∗) and so Sμ(Y, M, ∗) ⊂ Sμ(Y, M, ∗). Thus,
Sμ(Y, M, ∗) is closed in �∞(Y, M, ∗).

Now for the second part, it is clearly seen that Dμ(Y, M, ∗) ⊆ Sμ(Y, M, ∗)

which implies that Dμ(Y, M, ∗) ⊆ Sμ(Y, M, ∗). Thus, it is adequate to prove that
Sμ(Y, M, ∗) ⊆ Dμ(Y, M, ∗).
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Let x = (xk) ∈ Sμ(Y, M, ∗). Then, for λ ∈ (0, 1), ε > 0 and z1, z2, . . . , zn−1 ∈
Y , we have

μ(A) = μ({k ∈ N : M((z1, z2, . . . , zn−1, xk), ε) ≤ 1 − λ}) = 0.

We define y = (yk) by

yk =
{
xk, if k ∈ A
0, otherwise.

Then, y ∈ Dμ(Y, M, ∗) since μ(Ac) = 1 and y ∈ B(x,λ, ε). Thus, Sμ(Y, M, ∗) ⊆
Dμ(Y, M, ∗) and hence the proof. �

Theorem 20 Let μ be a measure. Then Sμ(Y, M, ∗) = Dμ(Y, M, ∗) if and only if μ
has the APO condition.

Proof Let μ be a measure with the APO condition. From Theorem16, it is clearly
seen that for anymeasureμ, Dμ(Y, M, ∗) ⊆ Sμ(Y, M, ∗). Then it is adequate to prove
that Sμ(Y, M, ∗) ⊆ Dμ(Y, M, ∗). Let y = (yk) ∈ Sμ(Y, M, ∗), then μ − statM(n) −
lim y = 0. So, for every λ ∈ (0, 1), ε > 0 and z1, z2, . . . , zn−1 ∈ Y , we have

μ({k ∈ N : M((z1, z2, . . . , zn−1, yk), ε) ≤ 1 − λ}) = 0.

Now, for ε > 0, j ∈ N and z1, z2, . . . , zn−1 ∈ Y , we define

A j =
{
k ∈ N : 1 − 1

j
≤ M((z1, z2, . . . , zn−1, yk), ε) < 1 − 1

j + 1

}
.

Then {A j } j∈N is a countable family of disjoint μ-null sets. Thus by APO con-
dition, there exists a family {Bj } j∈N such that |A j�Bj | < ∞, for all j ∈ N and
B = ⋃

j∈N Bj ∈ � with μ(B) = 0. Let A = N \ B, then μ(A) = 1. We claim that
(yk)k∈A is convergent to 0 in terms of probabilistic n-norm Mn .

Let η ∈ (0, 1) and ε > 0 be given and z1, z2, . . . , zn−1 ∈ Y . We choose a positive

integer N such that
1

N
< η. Then, we observe that

{k ∈ N : M((z1, z2, . . . , zn−1, yk), ε) ≤ 1 − η}
⊂

{
k ∈ N : M((z1, z2, . . . , zn−1, yk), ε) ≤ 1 − 1

N

}

⊂
N−1⋃
j=1

A j .

Since A j�Bj is a finite set for each j = 1, 2, . . . , N − 1, so there is an k0 ∈ N such
that
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⎛
⎝N−1⋃

j=1

Bj

⎞
⎠ ∩ {k ∈ N : k ≥ k0}

=
⎛
⎝N−1⋃

j=1

A j

⎞
⎠ ∩ {k ∈ N : k ≥ k0}.

If k ∈ A and k ≥ k0, then k /∈ B, which implies k /∈ ⋃N−1
j=1 Bj and so k /∈ ⋃N−1

j=1 A j .
Hence, for every k ≥ k0, k ∈ A and z1, z2, . . . , zn−1 ∈ Y , we have

M((z1, z2, . . . , zn−1, yk), ε) > 1 − η.

So y = (yk) ∈ Dμ(Y, M, ∗). Thus, Sμ(Y, M, ∗) ⊆ Dμ(Y, M, ∗).
Conversely, suppose Sμ(Y, M, ∗) = Dμ(Y, M, ∗), for a measure μ. We need

to show that μ has the APO. We choose a monotone sequence x = (xk) of dis-
tinct nonzero elements of Y such that Mn − lim y = 0. Then for every ε > 0 and
z1, z2, . . . , zn−1 ∈ Y , {M((z1, z2, . . . , zn−1, xk), ε)} is an increasing sequence con-
verging to 1. Let {Ai }i∈N be a family such that Ai ∩ A j = φ for i �= j withμ(Ai ) = 0,
for all i ∈ N. We define a sequence (yk) as follows:

yk =
{
xi , if k ∈ Ai

0, otherwise.

Let λ ∈ (0, 1) be given. We choose k ∈ N such that M((z1, z2, . . . , zn−1, xk), ε) >

1 − λ for each nonzero z1, z2, . . . , zn−1 ∈ Y . Then

K (ε,λ) = {k ∈ N : M((z1, z2, . . . , zn−1, yk), ε) ≤ 1 − λ}
⊆ A1 ∪ A2 ∪ . . . ∪ Ak .

So μ({K (ε,λ)}) = 0 and hence μ − statM(n) − lim y = 0. So, (yk) ∈ Sμ(Y, M, ∗)

which implies that (yk) ∈ Dμ(Y, M, ∗). Therefore, there exists P ⊆ N with μ(P) =
1 such that {yk}k∈P is μ-density convergent to 0 in terms of the probabilistic n-norm

Mn . Let C = N \ P . Then μ(C) = 0. Define Bi = Ai ∩ C . Then
∞⋃
i=1

Bi ⊆ C and so,

μ

( ∞⋃
i=1

Bi

)
= 0, i.e., μ(B) = 0, where B =

∞⋃
i=1

Bi .

Finally, we show that Ai � Bi is finite. Now,

Ai � Bi = Ai ∩ P,

which is finite, otherwise if Ai ∩ P is infinite, then yk = xi , for infinite number of
k ∈ P , which is a contradiction to the fact that (yk) is μ−statistically convergent to
0 with respect to probabilistic n-norm Mn . Hence Ai � Bi is finite, and hence the
proof. �
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Definition 21 A sequence y = (yk)k∈N in a PnN-space (Y, M, ∗) is said to be
Cauchy sequence in μ-density if there is a set C ⊆ N with μ(C) = 1 such that
(yk)k∈C is a usual Cauchy sequence in PnN-space.

Theorem 22 In a PnN-space (Y, M, ∗), if a sequence is a Cauchy sequence in μ-
density, then it is always a μ-statistically Cauchy sequence.

Proof Let y = (yk)k∈N be a Cauchy sequence in μ-density. Then there exists A ⊆ N

with μ(A) = 1, such that (yk)k∈A is a usual Cauchy sequence in the PnN-space
(Y, M, ∗). Then for every λ ∈ (0, 1), ε > 0 and z1, z2, . . . , zn−1 ∈ Y there is a k1 ∈
N such that

M((z1, z2, . . . , zn−1, yk − ym), ε) > 1 − λ,

for all k,m ≥ k1 and k,m ∈ A. Choose m0 ∈ A with m0 ≥ k1. Then clearly

M((z1, z2, . . . , zn−1, yk − ym0), ε) > 1 − λ,

for all k,m0 ≥ k1 and z1, z2, . . . , zn−1 ∈ Y . Hence,

{k ∈ N : M((z1, z2, . . . , zn−1, yk − ym0), ε) ≤ 1 − λ} ⊆ Ac.

Therefore,

μ({k ∈ N : M((z1, z2, . . . , zn−1, yk − ym0), ε) ≤ 1 − λ}) = 0

Hence, y is μ-statistically Cauchy. �

4 µ-Statistical Limit Points in PnN-Spaces

Definition 23 Let (Y, M, ∗) be a PnN-space. A number L ∈ Y is called a limit point
of the sequence y = (yk) in terms of the probabilistic n-norm Mn , if there exists a
subsequence of y that converges to L , in terms of the probabilistic n-norm Mn .

Let LM(n)(y) denotes the set of all limit points of the sequence y in terms of the
probabilistic n-norm Mn .

Definition 24 Let (Y, M, ∗) be a PnN-space. Then γ ∈ Y is called a μ-statistical
limit point of sequence y = (yk) in terms of the probabilistic n-norm Mn , if there
exists a setM = {m1 < m2 < · · · } ⊂ N such thatμ(M) �= 0 andMn − lim ymk = γ.

Let�μ
M(n)(y) denotes the set of all μ-statM(n)-limit points of the sequence y in terms

of the probabilistic n-norm Mn .

Theorem 25 Let (Y, M, ∗) be a PnN-space. For a sequence y = (yk), if μ −
statM(n) − lim y = y0, then �

μ
M(n)(y) = y0.
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Proof Let y = (yk) be a sequence such thatμ − statM(n) − lim y = y0. Suppose that
�

μ
M(n)(y) = {y0, z0} such that y0 �= z0. Then there exists two sets

M = {m1 < m2 < · · · } ⊂ N and L = {l1 < l2 < · · · } ⊂ N

such that
μ(M) �= 0, μ(L) �= 0

and
Mn − lim ym j = y0, Mn − lim yli = z0.

Therefore, for every λ ∈ (0, 1), ε > 0 and z1, z2, . . . , zn−1 ∈ Y , we have

μ({li ∈ L : M((z1, z2, . . . , zn−1, yli − z0), ε) ≤ 1 − λ}) = 0.

Then, we observe that

{li ∈ L : i ∈ N}
= {li ∈ L : M((z1, z2, . . . , zn−1, yli − z0), ε) > 1 − λ}
∪ {li ∈ L : M((z1, z2, . . . , zn−1, yli − z0), ε) ≤ 1 − λ},

which implies

μ({li ∈ L : M((z1, z2, . . . , zn−1, yli − z0), ε) > 1 − λ}) �= 0. (1)

Since μ − statM(n) − lim y = y0, so, we have

μ({k ∈ N : M((z1, z2, . . . , zn−1, yk − y0), ε) ≤ 1 − λ}) = 0, (2)

for every ε > 0 and z1, z2, . . . , zn−1 ∈ Y . Therefore, we can write

μ({k ∈ N : M((z1, z2, . . . , zn−1, yk − y0), ε) > 1 − λ}) �= 0.

Now, for every y0 �= z0, we have

{li ∈ L : M((z1, z2, . . . , zn−1, yli − z0), ε) > 1 − λ}
∩ {k ∈ N : M((z1, z2, . . . , zn−1, yk − y0), ε) > 1 − λ} = φ.

Thus,

{li ∈L : M((z1, z2, . . . , zn−1, yli − z0), ε) > 1 − λ}
⊆ {k ∈ N : M((z1, z2, . . . , zn−1, yk − y0), ε) ≤ 1 − λ},

which implies
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μ({li ∈ L : M((z1, z2, . . . , zn−1, yli − z0), ε) > 1 − λ}) = 0.

This contradicts the Eq. (1) and hence �
μ
M(n)(y) = {y0}. �

5 Conclusion

In the article, we have introduced the concepts of μ-statistical convergence and
μ-density convergence of a sequence in a probabilistic n-normed space and investi-
gated their various characterizations. We have also introduced the notion of Cauchy
sequence in μ-density and μ-statistical limit point of a sequence in a probabilistic
n-normed space and established some results regarding these concepts. Since every
classical norm induces a probabilistic n-norm, so the results established here are the
straightforward generalization of the corresponding results of the ordinary normed
space.
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